This is not the document you are looking for? Use the search form below to find more!

Report

# Antiderivative Of Fractions

Document Description
n calculus, antiderivative is an operation which perform opposite operation on derivatives or we can say that Antiderivative performs Integration operation because integration is opposite form of differentiation .
File Details
• Added: May, 01st 2012
• File size: 261.34kb
• Pages: 4
• Tags: antiderivative of fractions, fourier transform of sine wave, fourier transform of sine
• content preview
Submitter
• Name: nishagoyal
• Documents: 327
Embed Code:

#### Add New Comment

Related Documents

## Antiderivative of Fractions

by: nishagoyal, 3 pages

Antiderivative of Fractions In calculus, antiderivative is an operation which perform opposite operation on derivatives or we can say that antiderivative performs integration operation because ...

## Antiderivative Of Fractions

by: ramsingh11, 4 pages

In calculus, an antiderivative, primitive integral or indefinite integral[1] of a function f is a function F whose derivative is equal to f, i.e., F ′ = f. The process of solving for ...

## Antiderivative Of Fractions

by: nishagoyal, 4 pages

n calculus, antiderivative is an operation which perform opposite operation on derivatives or we can say that Antiderivative performs Integration operation because integration is opposite form of ...

## Antiderivative of a x

by: nishagoyal, 3 pages

First we will see what the meaning of antiderivation is? An antiderivative of a function f can be thought as a function F whose derivative is equal to f or we can say that F' = f. The method used to ...

## Antiderivative of 0

by: nishagoyal, 4 pages

ntiderivative of 0 Our question is to find the antiderivative of 0 ? So for calculating the antiderivative we have to know definition of antiderivative : in calculus, antiderivative is an operation ...

## Antiderivative of 2

by: nishagoyal, 3 pages

Antiderivative of 2 Antiderivative of ‘2’ can be calculated easily, for this we need to have knowledge of antiderivative. Whenever you talk about antidervative, it means the opposite of ...

## Antiderivative of log

by: nishagoyal, 3 pages

Antiderivative of log To evaluate the integral of logx, we adopt the method of integration by parts. Integration by parts is particularly helpful to evaluate the integral of a function which is given ...

## Antiderivative of secx

by: nishagoyal, 3 pages

can be calculated easily with help of knowledge of integration of trigonometric functions. Before going to solve this type of problem we must have knowledge of derivative of a function.If we draw a ...

## antiderivative of tanx

by: nishagoyal, 3 pages

we will use some identities of trigonometry,substitution method and the log identities the antiderivative of tanx is also known as integration of tanx.To get the antiderivative tanx use the ...

## Antiderivative Of Secx

by: nishagoyal, 4 pages

We have to find the Antiderivative of secx tanx. To find the antiderivative of secx tanx we must first understand the meaning or definition of antiderivative. Antiderivative is an operation which is ...

Content Preview
Antiderivative Of Fractions
Antiderivative Of Fractions
n calculus, antiderivative is an operation which perform opposite operation on
derivatives or we can say that Antiderivative performs Integration operation because
integration is opposite form of differentiation .
In today's session we are going to discuss antiderivative of fractions: There are
different-different types of fractions, so we discuss antiderivative of each type of
fractions- Antiderivative of denominator fraction ( 1 ) :
x For antiderivative of denominator fraction (which have only denominator values), we use
fol owing steps - a) First of all we convert denominator fraction into numerator value like 1.
In calculus, an antiderivative, primitive integral or indefinite integral of a function f is a
function F whose derivative is equal to f, i.e., F = f.The process of solving for
antiderivatives is called antidifferentiation (or indefinite integration) and its opposite
operation is called differentiation, which is the process of finding a derivative.

Tutorcircle.com
PageNo.:1/4

Antiderivatives are related to definite integrals through the fundamental theorem of
calculus: the definite integral of a function over an interval is equal to the difference
between the values of an antiderivative evaluated at the endpoints of the interval.
The function F(x) = x3/3 is an antiderivative of f(x) = x2. As the derivative of a constant is
zero, x2 wil have an infinite number of antiderivatives; such as (x3/3) + 0, (x3/3) + 7,
(x3/3) - 42, (x3/3) + 293 etc.
Thus, al the antiderivatives of x2 can be obtained by changing the value of C in F(x) =
(x3/3) + C; where C is an arbitrary constant known as the constant of integration.
Essential y, the graphs of antiderivatives of a given function are vertical translations of
each other; each graph's location depending upon the value of C.
In physics, the integration of acceleration yields velocity plus a constant. The constant is
the initial velocity term that would be lost upon taking the derivative of velocity because
the derivative of a constant term is zero. This same pattern applies to further integrations
and derivatives of motion (position, velocity, acceleration, and so on).
Non-continuous functions can have antiderivatives. While there are stil open questions in
this area, it is known that: Some highly pathological functions with large sets of
discontinuities may nevertheless have antiderivatives.
In some cases, the antiderivatives of such pathological functions may be found by
Riemann integration, while in other cases these functions are not Riemann integrable.
Assuming that the domains of the functions are open intervals:
A necessary, but not sufficient, condition for a function f to have an antiderivative is that f
have the intermediate value property.

Tutorcircle.com
PageNo.:2/4

That is, if [a, b] is a subinterval of the domain of f and d is any real number between f(a)
and f(b), then f(c) = d for some c between a and b. To see this, let F be an antiderivative
of f and consider the continuous function g(x) = F(x) - dx on the closed interval [a, b].
Then g must have either a maximum or minimum c in the open interval (a, b) and so 0 = g
(c) = f(c) - d.
The set of discontinuities of f must be a meagre set. This set must also be an F-sigma set
(since the set of discontinuities of any function must be of this type). Moreover for any
meagre F-sigma set, one can construct some function f having an antiderivative, which
has the given set as its set of discontinuities.
If f has an antiderivative, is bounded on closed finite subintervals of the domain and has a
set of discontinuities of Lebesgue measure 0, then an antiderivative may be found by
integration.
If f has an antiderivative F on a closed interval [a,b], then for any choice of partition , if
one chooses sample points as specified by the mean value theorem, then the
corresponding Riemann sum telescopes to the value F(b) - F(a).

Tut
Tu o
t rc
r i
c rc
r l
c e
l .
e c
. o
c m
Pa
P ge
g
e No
N ..::2/
3 3
/4

ThankYou
TutorCircle.com

# Document Outline

• ﾿

Antiderivative Of Fractions

If it doesn't, click here to try again.

Share Antiderivative Of Fractions to:

Insert your wordpress URL:

example:

http://myblog.wordpress.com/
or
http://myblog.com/

Share Antiderivative Of Fractions as:

From:

To:

Share Antiderivative Of Fractions.

Enter two words as shown below. If you cannot read the words, click the refresh icon.

Share Antiderivative Of Fractions as:

Copy html code above and paste to your web page.